

Prueba de Acceso a la Universidad para mayores de 25 años Convocatoria 2008

QUIMICA

Orden EDU/1924/2004

Texto para los Alumnos

2 páginas

CRITERIOS GENERALES DE EVALUACIÓN

El alumno deberá contestar a uno de los dos bloques A o B con sus problemas y cuestiones. Cada bloque consta de cuatro preguntas. Cada una de las preguntas puntuará como máximo dos y medio puntos.

La calificación máxima (entre paréntesis al final de cada pregunta) la alcanzarán aquellos ejercicios que, además de bien resueltos, estén bien explicados y argumentados, cuidando la sintaxis y la ortografía y utilizando correctamente el lenguaje científico, las relaciones entre las cantidades físicas, símbolos, unidades, etc.

DATOS GENERALES

Los valores de las constantes de equilibrio que aparecen en los problemas deben entenderse que hacen referencia a presiones expresadas en atmósferas y concentraciones expresadas en mol L⁻¹.

Constantes universales:

 $N_A = 6,0221 \times 10^{23} \text{ mol}^{-1}$ $u = 1,6605 \times 10^{-27} \text{ kg}$ $R = 8,3145 \text{ J K}^{-1} \text{ mol}^{-1} = 0,082 \text{ atm L K}^{-1} \text{ mol}^{-1}$

 $F = 96.485 \text{ C mol}^{-1}$ 1 atm = 1,0133 x 10⁵ N m⁻² e = 1,602 x 10⁻¹⁹ C

Masas atómicas:

H = 1,00; O = 16,00; S = 32,06; Cl = 35,45; K = 39,10; Cr = 52,00;

BLOQUE A

- 1.- El dicromato potásico (K₂Cr₂O₇) oxida al yoduro potásico en medio ácido sulfúrico para dar sulfato de potasio, yodo y sulfato de cromo (III).
 - a) Ajuste la reacción por el método del ión-electrón, e indique las especies oxidante y reductora. (hasta 1,5 puntos)
- **b)** Calcule la cantidad de sulfato de cromo (III) que podría obtenerse si se parte de 5 g de dicromato potásico, supuesto que el rendimiento de la reacción es del 60 %. (hasta 1,0 puntos)
- **2.-** La etiqueta de un ácido clorhídrico comercial indica que su concentración en peso es del 40 % y la densidad 1,20 g/cm³.
- a) Indique la cantidad de agua que debe de añadirse a 20 cm³ de dicho ácido para que la disolución resultante sea 0,15 molar. (hasta 1,5 puntos)
 - **b)** Si se mezclan 500 cm³ del ácido clorhídrico comercial con 100 cm³ de una disolución 2 M del mismo ácido, ¿cuál sería la molaridad resultante? Considere que los volúmenes son aditivos.

(hasta 1,0 puntos)

- 3.- Indique y razone para las moléculas NH₃, BeH₂, CHCl₃ y SO₂ cuál será:
 - a) La hibridación del átomo central.

(hasta 1,0 puntos)

b) La geometría.

(hasta 0,5 puntos)

c) La polaridad.

(hasta 1,0 puntos)

- 4.- Indique, justificando la respuesta, cuál o cuáles de las siguientes afirmaciones son ciertas.
 - a) La entalpía de reacción depende de la velocidad de reacción.

(hasta 0,75 puntos)

b) No todas las colisiones que se producen entre las moléculas dan lugar a reacción.

(hasta 0,75 puntos)

c) En general, un aumento de la temperatura favorece la velocidad de las reacciones químicas.

(hasta 1,0 puntos)

Prueba de Acceso a la Universidad para mayores de 25 años Convocatoria 2008

QUIMICA

Orden EDU/1924/2004

Texto para los Alumnos

2 páginas

BLOQUE B

1.- Para el proceso de reducción: $ZnO(s) + CO(g) \rightarrow Zn(g) + CO_2(g)$

- a) Determine su entalpía de reacción sabiendo que la entalpía estándar de formación del ZnO (s) es
 348 kJ/mol, la entalpía de vaporización del Zn (s) es 133,76 kJ/mol y la entalpía de combustión del CO (g) es 284,24 kJ/mol. (hasta 1,5 puntos)
- **b)** Indique si el proceso es exotérmico o endotérmico.

(hasta 0,5 puntos)

c) Con los datos de que se dispone, ¿podría decidirse si el proceso es o no espontáneo?

(hasta 0,5 puntos)

- **2.-** Suponiendo que los volúmenes son aditivos, se mezclan 12,5 mL de NaOH 0,32 molar con 50 mL de HCl 0,10 molar.
 - a) Indique cuál será el pH de la disolución resultante.

(hasta 1,75 puntos)

b) ¿Puede considerarse como limitante a alguno de los dos reactivos?

(hasta 0,75 puntos)

- **3.-**El proceso más conocido para la obtención industrial del ácido nítrico es la oxidación del amoniaco catalizada con platino a unos 800 °C de temperatura.
 - a) Escriba las reacciones de las tres etapas en las que puede establecerse el proceso.

(hasta 1,5 puntos)

b) ¿En cuál de ellas actúa el catalizador?

(hasta 0.5 puntos)

c) Cite dos aplicaciones importantes del ácido nítrico.

(hasta 0,5 puntos)

- 4.- Supuesto un elemento cuyo número atómico es 35:
 - a) Señale cuál es su configuración electrónica en el estado fundamental.

(hasta 1,0 puntos)

b) Indique a qué periodo y grupo del sistema de periodos corresponde.

(hasta 0,75 puntos)

c) Indique y justifique si tendrá mayor, menor o igual afinidad electrónica que el elemento situado a su derecha en el sistema de periodos. (hasta 0,75 puntos)