

Prueba de Acceso a la Universidad para mayores de 25 años

FISICA

Orden EDU/1924/2004

Texto para los alumnos

Nº de páginas: 2

Convocatoria 2006

INSTRUCCIONES:

- Cada alumno elegirá obligatoriamente UNA de las dos opciones que se proponen.
- Las fórmulas empleadas en la resolución de los ejercicios deben ir acompañadas de los razonamientos oportunos y sus resultados numéricos de las unidades adecuadas.
- La puntuación máxima es de <u>3 puntos</u> para cada problema y de <u>2 puntos</u> para cada cuestión.
- Al dorso dispone de una tabla de constantes físicas, donde podrá encontrar, en su caso, los valores que necesite.

OPCIÓN A

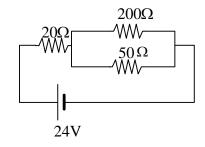
Cuestión A1

¿Qué son ondas longitudinales y ondas transversales? Ponga un ejemplo de cada uno de estos tipos de onda (2 puntos).

Cuestión A2

¿Qué se entiende por índice de refracción? ¿Puede el índice de refracción ser superior a la unidad? Razone su respuesta (2 puntos).

Problema A3


Los satélites utilizados en el sistema GPS (Sistema de Posicionamiento Global) describen órbitas circulares alrededor a la Tierra dando dos vueltas completas al día. Calcule:

- a) su velocidad angular (1 punto).
- b) su radio de giro (2 puntos).

Problema A4

En el circuito de la figura calcule:

- a) La resistencia equivalente del circuito (1,5 puntos).
- b) La intensidad de corriente que circula por la resistencia de $50 \Omega (1.5 \ puntos)$.

Prueba de Acceso a la Universidad para mayores de 25 años

FISICA

Texto para los alumnos

Nº de páginas: 2

Convocatoria 2006

Orden EDU/1924/2004

OPCIÓN B

Cuestión B1

Enuncie la ley de Coulomb para la interacción entre cargas eléctricas (1,5 puntos). ¿La interacción eléctrica es atractiva o repulsiva? (0,5 puntos).

Cuestión B2

Momento lineal. Teorema de conservación (2 puntos).

Problema B3

¿Qué cantidad de calor es necesaria para fundir un bloque de hielo de 10 kg que inicialmente está a una temperatura de -10 °C? (*3 puntos*).

Datos: Calor específico del hielo: 0,5 kcal kg⁻¹K⁻¹; Calor latente de fusión del hielo: 80 cal g⁻¹.

Problema B4

Un automóvil circula a 72 km/h por una carretera cuando se encuentra súbitamente con un obstáculo a 100 m de distancia lo que le obliga a frenar. Si la aceleración de frenado del automóvil es de 2,5 m/s²:

a) ¿Cuánto tiempo tardará en detenerse? (1,5 puntos).

Aceleración de la gravedad en la superficie terrestre

b) ¿Logrará detenerse antes de impactar con el obstáculo? (1,5 puntos).

CONSTANTES FÍSICAS

 $g = 9.8 \text{ m/s}^2$

Constante de gravitación universal $G = 6.67 \cdot 10^{-11} \,\mathrm{N m^2/kg^2}$ Masa de la Tierra $M_T = 5.98 \cdot 10^{24} \text{ kg}$ $R_T = 6.37 \cdot 10^6 \,\mathrm{m}$ Radio de la Tierra $K = 1/(4\pi\epsilon_0) = 9 \cdot 10^9 \text{ N m}^2/\text{C}^2$ Constante eléctrica en el vacío $e^{-} = 1,6.10^{-19} \text{ C}$ Carga del electrón $\mu_0 = 4\pi \cdot 10^{-7} \text{ N/A}^2$ Permeabilidad magnética del vacío $c = 3.10^8 \text{ m/s}$ Velocidad de la luz en el vacío $m_e = 9,11 \cdot 10^{\text{-}31} \ \text{kg}$ Masa del electrón $h = 6.63 \cdot 10^{-34} \text{ J s}$ Constante de Planck $1 \text{ u} = 1.66 \cdot 10^{-27} \text{ kg}$ Unidad de masa atómica $1 \text{ eV} = 1.6 \cdot 10^{-19} \text{ J}$ Electronvoltio