

Evaluación de Bachillerato para el Acceso a la Universidad

Castilla y León

FÍSICA

EXAMEN

Nº páginas: 2

OPTATIVIDAD: se podrán elegir siete preguntas del bloque A y tres preguntas del bloque B.

CRITERIOS GENERALES DE EVALUACIÓN:

- Todas las preguntas se evaluarán sobre un máximo de 1 punto, tanto las del bloque A como las del bloque B.
- La calificación final se obtendrá sumando las notas de las 10 preguntas elegidas.
- Las **fórmulas empleadas** en la resolución de los ejercicios deberán acompañarse de los <u>razonamientos oportunos</u> y los <u>resultados numéricos</u> obtenidos para las magnitudes físicas deberán escribirse con las <u>unidades</u> adecuadas.

En la última página dispone de una tabla de constantes físicas, donde encontrará (en su caso) los valores que necesite.

BLOQUE A: el alumno debe responder como máximo a 7 preguntas de las 11 planteadas.

Interacción gravitatoria

- **A.1**) Un objeto de masa $m = 10^4$ kg se encuentra en una órbita circular a 30000 km de la superficie de la Tierra. ¿Qué energía será necesario aportarle para que pueda escapar de la gravedad terrestre?
- **A.2**) Calcule la altura a la que se debe elevar un cuerpo para que pierda un 30% de su peso. ¿Cuánto variará su masa?

Interacción electromagnética

- **A.3**) A una distancia d=20 m de una carga puntual positiva q, otra carga puntual $q_0=2\cdot 10^{-6}$ C experimenta una fuerza de magnitud $F=15\cdot 10^{-6}$ N. ¿Qué valor tiene la carga q? ¿Qué trabajo será necesario para acercar la carga q_0 a 10 m de la carga q? Discútase el signo de este último resultado.
- **A.4**) Por dos hilos rectilíneos de gran longitud y paralelos, separados una distancia de 10 cm, circulan sendas corrientes de intensidad I_1 e I_2 . El valor del campo magnético en el punto medio entre ambos hilos es $4 \cdot 10^{-6}$ T si las corrientes circulan en el mismo sentido y $8 \cdot 10^{-6}$ T si lo hacen en sentidos opuestos. Determine los valores de I_1 e I_2 .
- **A.5**) Una espira cuadrada de 5 cm de lado se encuentra en un campo magnético uniforme perpendicular al plano de la espira y que varía con el tiempo de acuerdo con la función $B(t) = 2t^2 1$ (S.1.). Determine el valor de la fuerza electromotriz inducida para t=4 s.

Ondas

- **A.6**) Una fuente sonora de potencia $3.61 \cdot 10^{-4}$ W emite uniformemente en todas las direcciones. ¿Cuál es el nivel de intensidad sonora en decibelios a 10 m de la fuente? Dato: Intensidad física umbral $I_0 = 10^{-12}$ W m⁻².
- **A.7**) Una onda armónica transversal se desplaza en el sentido positivo del eje X, tiene una amplitud de 8 cm, una longitud de onda de 4 cm y una frecuencia de 8 Hz. Si para x = 0 y t = 0 la elongación vale y = 4 cm y su velocidad es positiva, determine la ecuación de la onda y la distancia mínima que separa dos puntos de la onda cuya diferencia de fase es $\pi/2$ rad.

Óptica geométrica

- **A.8**) Un objeto está situado a 1,8 m de una pantalla. Una lente convergente forma una imagen del objeto en la pantalla, tal que la imagen es 5 veces mayor e invertida. Determine la focal de la lente.
- **A.9**) Un haz de luz, de frecuencia 3,5·10¹⁴ Hz, incide desde el aire sobre un material de índice de refracción 1,35. Si el haz incidente forma un ángulo de 60° con la superficie de separación entre ambos medios, determine la longitud de onda de la luz en el material y el ángulo que forman los rayos reflejado y refractado.

Física del siglo XX

- **A.10**) Un dispositivo usado en radioterapia contiene 0,20 g de ⁶⁰Co, emisor gamma de semivida (período de semidesintegración) 5,27 años. ¿Cuánto tiempo debe pasar para que se desintegre el 25% del cobalto inicial?
- **A.11**) Sobre un metal cuyo trabajo de extracción es 2 eV incide una radiación de longitud de onda 500 nm. Calcule la velocidad máxima de los electrones emitidos.

BLOQUE B: el alumno debe responder como máximo a 3 preguntas de las 6 planteadas.

Interacción gravitatoria

B.1) Dos satélites describen órbitas circulares de radios R_1 y R_2 alrededor de la Tierra. Ambos satélites tienen la misma masa y $R_1 > R_2$. Indique razonadamente cuál de los dos satélites tiene mayor energía mecánica.

Interacción electromagnética

- **B.2**) Si se conoce el potencial electrostático en un solo punto, ¿se puede determinar el campo eléctrico en dicho punto? Razone la respuesta.
- **B.3**) Un electrón, un protón y un neutrón se desplazan con igual velocidad y entran perpendicularmente en un campo magnético uniforme y constante. Compare razonadamente las trayectorias descritas por cada una de las partículas.

Ondas

B.4) Defina número de onda k y velocidad de propagación de una onda armónica. La frecuencia angular es función de estos dos parámetros. ¿Cómo se expresa matemáticamente esta función?

Óptica geométrica

B.5) Explique la diferencia entre una imagen real y una imagen virtual. ¿Es posible que una lente divergente forme una imagen real de un objeto? Razone la respuesta.

Física del siglo XX

B.6) Complete razonadamente la siguiente serie radiactiva o cadena de desintegración (cada proceso es la secuencia consecutiva del anterior):

a)
$$^{238}_{92}U \rightarrow ^{234}_{90}Th + ____$$

b)
$$^{234}_{90}Th \rightarrow ^{234}_{91}Pa + _____$$

c)
$$^{234}_{91}Pa \rightarrow ^{???}_{???}U + \beta^{-}$$

$$d)$$
 $\frac{???}{???}U \rightarrow \frac{???}{???}Th + \alpha$

CONSTANTES FÍSICAS	
Aceleración de la gravedad en la superficie terrestre	$g_0 = 9.80 \text{ m s}^{-2}$
Constante de gravitación universal	$G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Radio medio de la Tierra	$R_{\rm T} = 6.37 \cdot 10^6 \mathrm{m}$
Masa de la Tierra	$M_{\rm T} = 5.98 \cdot 10^{24} \rm kg$
Constante eléctrica en el vacío	$K_0 = 1/(4 \pi \varepsilon_0) = 9,00 \cdot 10^9 \text{ N m}^2 \text{ C}^{-2}$
Permeabilidad magnética del vacío	$\mu_0 = 4 \pi \cdot 10^{-7} \text{ N A}^{-2}$
Carga elemental	$e = 1,60 \cdot 10^{-19} \mathrm{C}$
Masa del electrón	$m_{\rm e} = 9.11 \cdot 10^{-31} \rm kg$
Masa del protón	$m_{\rm p} = 1.67 \cdot 10^{-27} \text{ kg}$
Velocidad de la luz en el vacío	$c_0 = 3,00 \cdot 10^8 \text{ m s}^{-1}$
Constante de Planck	$h = 6.63 \cdot 10^{-34} \mathrm{J s}$
Unidad de masa atómica	$1 u = 1,66 \cdot 10^{-27} \text{ kg}$
Electronvoltio	$1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J}$