

Pruebas de acceso a enseñanzas universitarias oficiales de grado Mayores de 25 y 45 años Castilla y León

MATEMÁTICAS

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo desarrollar los cuatro ejercicios de la misma en el orden que desee.

2.- CALCULADORA: Se permitirá el uso de calculadoras no programables (que no admitan memoria para texto ni representaciones gráficas).

CRITERIOS GENERALES DE EVALUACIÓN: Cada ejercicio se puntuará sobre un máximo de 2,5 puntos. Se observarán fundamentalmente los siguientes aspectos: Correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver. Justificaciones teóricas que se aporten para el desarrollo de las respuestas. Claridad y coherencia en la exposición. Precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

OPCIÓN A

E1.- a) Calcular las matrices A y B tales que: $\begin{cases} 2A + B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \\ A - B = \begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix} \end{cases}$ (1,5 puntos)
b) Calcular la inversa de la matriz: $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$. (1 punto)

E2.- Consideremos el plano $\pi \equiv x + y + z - 3 = 0$ y la recta $r \equiv x = y = z$.

- a) Hallar los puntos de la recta r cuya distancia a π sea igual a $\sqrt{3}$. (1,5 puntos)
- b) Calcular el punto de corte de la recta r y el plano π . (1 punto)

E3.- a) Dada la función: $f(x) = ax^2 + 2x$. Calcular a para que f'(2) = 4. (1 punto)

b) Calcular el área comprendida entre las curvas $f(x) = x^2$, y g(x) = x + 2. (1,5 puntos)

E4.- a) Calcular el valor de *a* para que $\lim_{x\to 0} \frac{a \sin x + xe^x}{x} = 2$. (1,5 puntos)

b) Calcular $\int x^2 sen(x^3) dx$. (1 punto)

OPCIÓN B

E1.- Sea la matriz $A = \begin{pmatrix} m & 1 & 1 \\ 1 & m & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

a) Calcular el rango de A en función de m.

(1,25 puntos)

b) Para m = 0, calcular A^{-1} .

(1,25 puntos)

E2.- Consideremos los planos $\pi_1 \equiv 2x - y + z - 1 = 0$ y $\pi_2 \equiv 2x - y + z - 2 = 0$.

a) Calcular la distancia entre ellos.

(1 punto)

b) Hallar el plano que es perpendicular a π_1 y que pasa por los puntos A=(0,-1,2) y B=(1,0,3). (1,5 puntos)

E3.- Sea $f(x) = e^{2x} - 2$

a) Demostrar que tiene una única raíz en R.

(1,5 puntos)

b) Calcular la recta tangente a la gráfica de f(x) en el punto (0, f(0)).

(1 punto)

E4.- Dada la función $f(x) = \frac{x}{x-1}$, se pide:

a) Calcular el dominio y las asíntotas de f(x).

(1 punto)

b) Calcular el área limitada por la gráfica de f(x), el eje OX y las rectas x = 2 y x = 5.

(1,5 puntos)