

Evaluación de Bachillerato para Acceder a estudios Universitarios

Castilla y León

QUÍMICA

EJERCICIO

Nº Páginas: 3

CRITERIOS GENERALES DE EVALUACIÓN

El alumno deberá contestar a una de las dos opciones A o B con sus problemas y cuestiones. Cada opción consta de cinco preguntas.

La calificación máxima (entre paréntesis al final de cada pregunta) la alcanzarán aquellos ejercicios que, además de bien resueltos, estén bien explicados y argumentados, cuidando la sintaxis y la ortografía y utilizando correctamente el lenguaje científico, las relaciones entre las cantidades físicas, símbolos, unidades, etc.

DATOS GENERALES

Los valores de las constantes de equilibrio que aparecen en los problemas debe entenderse que hacen referencia a presiones expresadas en atmósferas y concentraciones expresadas en mol·L⁻¹.

El alumno deberá utilizar los valores de los números atómicos, masas atómicas y constantes universales que se le suministran con el examen.

OPCIÓN A

1. En función del tipo de enlace o fuerza intermolecular explique por qué:

a. El agua es líquida a temperatura ambiente y el H₂S es un gas. (Hasta 0,6 puntos)
b. El yodo (I₂) es sólido y el flúor (F₂) es un gas. (Hasta 0,6 puntos)
c. La energía reticular del NaCl es menor que la del MgCl₂. (Hasta 0,7 puntos)

d. El plomo es conductor de la electricidad, mientras el diamante no lo es. (Hasta 0,6 puntos)

- 2. Dada la reacción: $H_2S + HNO_3 \rightarrow S + NO + H_2O$
 - a. Ajuste la reacción por el método del ión-electrón, indicando la especie oxidante y reductora.

(Hasta 1,0 puntos)

- **b.** Calcule la masa de ácido nítrico necesario para obtener 50 g de azufre, si el rendimiento del proceso es del 75 %. (Hasta 1,0 puntos)
- 3. Una disolución acuosa de ácido benzoico (C₆H₅-COOH) 0,05 M esta disociada un 3,49%. Calcule:
 - a. La constante de ionización de dicho ácido.

(Hasta 0,8 puntos)

b. El volumen de agua que hay que añadir a 50 mL de una disolución de ácido clorhídrico 0,01 M para que tenga igual pH que la disolución de ácido benzoico, suponiendo que los volúmenes son aditivos.

(Hasta 1,2 puntos)

- **4.** En un recipiente cerrado y vacío de 10 L se ponen en contacto 4,4 g de dióxido de carbono con carbono sólido, se forma monóxido de carbono y se establece el equilibrio a 850°C. El valor de K_c para este equilibrio a 850°C es de 0,153. Calcular:
 - a. La masa de dióxido de carbono en el equilibrio.

(Hasta 1,2 puntos)

b. La presión parcial del monóxido de carbono en el equilibrio y la presión total en el equilibrio.

(Hasta 0,8 puntos)

5. Escriba la reacción y nombre los productos obtenidos al someter al 1-butanol (butan-1-ol) a un proceso de:

a. Combustión	(Hasta 0,3 puntos)
b. Oxidación	(Hasta 0,4 puntos)
c. Deshidratación	(Hasta 0,4 puntos)
d. Reacción con ácido metanoico	(Hasta 0.4 puntos)

Evaluación de Bachillerato para Acceder a estudios Universitarios

Castilla y León

QUÍMICA

EJERCICIO

Nº Páginas: 3

OPCIÓN B

1. a. Defina energía de ionización.

(Hasta 0,5 puntos)

- **b.** Justifique qué especie de cada uno de los pares siguientes tiene mayor radio y cual mayor energía de ionización:
 - i) Na y Mg
- ii) Si y C
- iii) Na y Na⁺
- iv) Cl- y K+

(Hasta 2,0 puntos)

- **2.** La ecuación de velocidad para la reacción: H₂ (g) + I₂ (g) → 2HI (g) es de orden 1 respecto al hidrógeno y de orden 1 respecto al yodo.
 - a. Escriba la ley de velocidad e indique qué unidades tendrá la constante de velocidad.

(Hasta 0,5 puntos)

- **b.** Justificando debidamente la respuesta, indique cómo variará la velocidad de la reacción:
- i. Si manteniendo la temperatura constante, la presión se hace el doble, (debido a una variación del volumen). (Hasta 0,5 puntos)
- ii. Si aumentamos la temperatura.

(Hasta 0,5 puntos)

iii. Si se adiciona un catalizador.

(Hasta 0,5 puntos)

- 3. La solubilidad del hidróxido de manganeso (II) en agua es de 1,96 mg/L. Calcule:
 - a. La constante del producto de solubilidad de dicha sustancia.

(Hasta 0,5 puntos)

b. Calcule el pH de la disolución saturada.

(Hasta 0,5 puntos)

- c. Calcule la solubilidad del hidróxido de manganeso (II) en una disolución de hidróxido de sodio
 0,1 M. (Hasta 1,0 puntos)
- **4.** Se desea dar un baño de plata a una cuchara. Para ello, se la introduce en una disolución de nitrato de plata (AgNO₃) y se hace pasar una corriente de 0,5 A durante 30 minutos.
 - a. Realice un dibujo de la cuba electrolítica.

(Hasta 0,4 puntos)

- **b**. Escriba la reacción que tiene lugar en el cátodo y calcule la masa de plata depositada sobre la cuchara. (Hasta 0,8 puntos)
- **c.** Si la misma cantidad de electricidad es capaz de depositar 0,612 g de oro sobre el cátodo de una cuba electrolítica que contiene una sal de oro, determine el número de oxidación del oro en la sal.

(Hasta 0,8 puntos)

- **5. a.** Para la fórmula $C_5H_{10}O$, formule y nombre dos posibles isómeros:
 - i. de posición,
- ii. de función,
- iii. de cadena.

(Hasta 1,2 puntos)

b. Escriba la reacción de polimerización que da lugar al PVC (policloruro de vinilo), indicando el tipo de reacción que se ha producido. (Hasta 0,3 puntos)

Evaluación de Bachillerato para Acceder a estudios Universitarios

QUÍMICA

EJERCICIO

Nº Páginas: 3

Castilla y León

1.	Tabla	periódica	de los	elementos
----	-------	-----------	--------	-----------

Períodos

Grupos
Grupos

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	1																	2
1	H																	He
	1,01																	4,00
	3	4				Z	Número atómico						5	6	7	8	9	10
2	Li	Be				X		Símbolo)				В	C	N	О	F	Ne
	6,94	9,01				$\mathbf{A_r}$	Masa atómica relativa					10,81	12,01	14,01	16,00	19,00	20,18	
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	P	S	Cl	Ar
	22,99	24,31											26,98	28,09	30,97	32,06	35,45	39,95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
•	39,10	40,08	44,96	47,87	50,94	52,00	54,94	55,85	58,93	58,69	63,55	65,38	69,72	72,63	74,92	78,97	79,90	83,80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85,47	87,62	88,91	91,22	92,91	95,95	[97]	101,07	102,91	106,42	107,87	112,41	114,82	118,71	121,76	127,60	126,90	131,29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	La	Hf	Ta	\mathbf{W}	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	132,91	137,33	138,91	178,49	180,95	183,84	186,21	190,23	192,22	195,08	196,97	200,59	204,38	207,2	208,98	[209]	[210]	[222]
	87	88	89	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
	[223]	[226]	[227]	[267]	[270]	[271]	[270]	[277]	[276]	[281]	[282]	[285]	[285]	[289]	[289]	[293]	[294]	[294]
			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	
			138,91	140,12	140,91	144,24	[145]	150,36	151,96	157,25	158,93	162,50	164,93	167,26	168,93	173,05	174,97	
			89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	

Am

[243]

Cm

[247]

2. Constantes físico-químicas

Carga elemental (e): 1,602·10⁻¹⁹ C

 \mathbf{Ac}

[227]

Constante de Avogadro (N_A): 6,022·10 ²³ mol⁻¹ Unidad de masa atómica (u): 1,661·10⁻²⁷ kg Constante de Faraday (F): 96490 C mol⁻¹

Th

232,04

Constante molar de los gases (R) : $8,314 \text{ J mol}^{-1} \text{ K}^{-1} = 0,082 \text{ atm dm}^3 \text{ mol}^{-1} \text{ K}^{-1}$

Pa

231,04

 \mathbf{U}

238,03

Np

[237]

Pu

[244]

3. Algunas equivalencias

Fm

[257]

 $1 \text{ atm} = 760 \text{ mmHg} = 1,013 \cdot 10^5 \text{ Pa}$

Md

[258]

1 cal = 4,184 J

Cf

[251]

Es

[252]

Bk

[247]

 $1 \text{ eV} = 1,602 \cdot 10^{-19} \text{ J}$

No

[259]

Lr

[262]