

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Mayores de 25 y 45 años Castilla y León

FÍSICA

EJERCICIO

Nº Páginas: 2

OPTATIVIDAD: EL ALUMNO DEBERÁ ELEGIR OBLIGATORIAMENTE <u>UNA</u> DE LAS DOS OPCIONES QUE SE PROPONEN (**A** o **B**) Y DESARROLLAR LOS **5 EJERCICIOS** DE LA MISMA.

CRITERIOS GENERALES DE EVALUACIÓN:

- Todos los ejercicios se puntuarán de la misma manera: sobre un máximo de <u>2 puntos</u>. La calificación final se obtendrá sumando las notas de los 5 ejercicios de la opción escogida.
- Las fórmulas empleadas en la resolución de los ejercicios deberán ir acompañadas de los <u>razonamientos</u>
 <u>oportunos</u> y los <u>resultados numéricos</u> obtenidos para las distintas magnitudes físicas deberán escribirse con las <u>unidades</u> adecuadas.

En la última página dispone de una **tabla de constantes físicas**, donde podrá encontrar (en su caso) los valores que necesite.

OPCIÓN A

Ejercicio A1

- a) Defina campo gravitatorio y líneas de campo. (1 punto)
- **b**) Exprese la intensidad de campo gravitatorio, explicando cada uno de los términos que aparecen, y la unidad que lo caracteriza. (*1 punto*)

Ejercicio A2

Una masa m = 2 kg está unida a un muelle de masa despreciable y constante elástica k = 72 N/m, oscilando alrededor de la posición de equilibrio. La amplitud del movimiento es A = 0.4 m. Calcule:

- a) La energía total del sistema y las energías cinética y potencial cuando el desplazamiento del cuerpo es $x = 0.2 \text{ m} \cdot (1.5 \text{ puntos})$
- **b**) La velocidad máxima que alcanza la masa durante las oscilaciones. (0,5 puntos)

Ejercicio A3

Un objeto se encuentra a 10 cm a la izquierda del vértice de un espejo esférico de radio de curvatura 30 cm. Explique las características de la imagen (naturaleza, posición y aumento), dependiendo de que el espejo sea:

- a) Cóncavo (1 punto).
- **b**) Convexo (1 punto)

Ilustre ambos apartados con su correspondiente formación geométrica de las imágenes.

Ejercicio A4

Un protón en reposo, $m_p = 1,67 \cdot 10^{-27} \text{ kg}$, es acelerado en el sentido positivo del eje X hasta una velocidad $v = 10^5 \text{ m/s}$. En ese momento penetra en un espectrómetro de masas donde existe un campo magnético $\vec{B} = 0,01 \text{ k} \text{ T}$.

- a) Obtenga el vector fuerza que actúa sobre el protón en el espectrómetro. (1 punto)
- **b)** Calcule la diferencia de potencial que hubo que emplear, antes de que el protón entrase en el espectrómetro, para que tuviese la velocidad indicada. (*I punto*)

Ejercicio A5

- a) ¿Qué diferencias hay entre fusión y fisión nuclear? (1 punto)
- b) Calcule la energía que se desprende por mol de helio en el proceso de fusión siguiente:

$$2^{2}H \rightarrow {}^{4}He$$

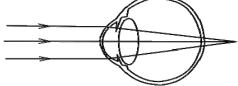
La masa del átomo de hidrógeno ²₁H es 2,0140 u y la del átomo de helio ⁴₂He es 4,0026 u . (1 punto)

OPCIÓN B

Ejercicio B1

- a) Si E_c es la energía cinética de la Tierra en su órbita alrededor del Sol y E_p la energía potencial del sistema Tierra Sol, ¿qué relación existe entre E_c y E_p ? Razone su respuesta suponiendo que la órbita es circular. (*I punto*)
- **b**) Si el radio medio de la órbita de la Tierra alrededor del Sol es: $R_{\text{T-S}} = 1,496 \cdot 10^{11} \text{ m}$, calcule la energía cinética de traslación y la energía potencial de la Tierra sabiendo que la masa del Sol es: $M_{\text{S}} = 1,99 \cdot 10^{30} \text{ kg}$. (*I punto*)

Ejercicio B2


Ondas

- a) Naturaleza del movimiento ondulatorio (1 punto)
- **b**) Clases de ondas. Magnitudes características de las ondas. (1 punto)

Ejercicio A3

La figura muestra un esquema de un ojo defectuoso.

- a) Explique e identifique el defecto que presenta. (1 punto)
- b) ¿Cómo se corrige? Realice un esquema explicativo. (1 punto)

Ejercicio B4

- a) Enuncie la ley de Faraday de la inducción electromagnética. (1 punto)
- b) El flujo magnético que atraviesa una espira varía con el tiempo de acuerdo con la expresión:

$$\varphi = 10 + 2 \cdot t \quad (S.I.)$$

Deduzca el valor de la fuerza electromotriz inducida al cabo de 2 s. (1 punto)

Ejercicio B5

- a) Calcule la longitud de las ondas materiales asociadas de un electrón de 1 eV de energía cinética y de una pelota de tenis de 100 g que se mueve a 30 m/s. (1,5 puntos)
- **b**) ¿Qué conclusiones se derivan de los resultados obtenidos en el apartado anterior en relación con los efectos ondulatorios de ambos objetos? (0,5 puntos)

CONSTANTES FÍSICAS	
Aceleración de la gravedad en la superficie terrestre	$g_0 = 9.80 \text{ m s}^{-2}$
Constante de gravitación universal	$G = 6.67 \cdot 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Radio medio de la Tierra	$R_{\rm T} = 6.37 \cdot 10^6 \rm m$
Masa de la Tierra	$M_{\rm T} = 5.98 \cdot 10^{24} \rm kg$
Constante eléctrica en el vacío	$K_0 = 1/(4 \pi \varepsilon_0) = 9,00 \cdot 10^9 \text{ N m}^2 \text{ C}^{-2}$
Permeabilidad magnética del vacío	$\mu_0 = 4 \pi \cdot 10^{-7} \text{ N A}^{-2}$
Carga elemental	$e = 1.60 \cdot 10^{-19} \text{ C}$
Masa del electrón	$m_{\rm e} = 9.11 \cdot 10^{-31} \rm kg$
Velocidad de la luz en el vacío	$c_0 = 3.00 \cdot 10^8 \text{ m s}^{-1}$
Constante de Planck	$h = 6.63 \cdot 10^{-34} \mathrm{J s}$
Unidad de masa atómica	$1 \text{ u} = 1,66 \cdot 10^{-27} \text{ kg}$
Electronvoltio	$1 \text{ eV} = 1,60 \cdot 10^{-19} \text{ J}$